mst

systemtechnik

ProMoS JSON Data Exchange

© 2015 MST Systemtechnik AG, Belp

Version 1.2
03.03.2015

ProMoS JSON Data Exchange

© 2015 MST Systemtechnik AG, Belp

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the
written permission of the publisher.

Products that are referred to in this document may be either trademarks and/or registered trademarks of the
respective owners. The publisher and the author make no claim to these trademarks.

While every precaution has been taken in the preparation of this document, the publisher and the author assume no
responsibility for errors or omissions, or for damages resulting from the use of information contained in this
document or from the use of programs and source code that may accompany it. In no event shall the publisher and
the author be liable for anyloss of profit or any other commercial damage caused or alleged to have been caused
directly or indirectly by this document.

Printed: Marz 2015 in Belp, Switzerland

Table of contents

Table of contents

Kapitel 1 Introduction 1
T o =1 (0 7 1
Kapitel 2 Configuration 1
Kapitel 3 Data Exchange 1
0 R 1YY o B =T 1 To] oo T =P 1

3.2 AUTN BN CALION et et aa e 2

TG I = g o] |V (RS S= Vo R PP 2

R TN T 101 o] L= PSPPSR 2

T R oY= Lo D X - VP 2

3.4.1 Example
3.4.2 Request Fields

e o (=TS Y o To] o Y= 1= (o PSPPI 4
1R A 1@ =T o =T 11 I PP RTOPR PN 5
R T VT g (ST B - L - NPT 6
TN I - 1o 1 o] =PSSO U P PRRPPPPPI 7
R ST o (=T [T XS] A o T= o O PO UP PP PPPPPI 8
B 5.3 RESPONSE FIEIAS ikttt e h e e it e ekt e ke ea bt e e bt h et e et e e nab e bt n 9
R A 110 = o 1= 141 PP TS T TP 10

© 2015 MST Systemtechnik AG, Belp

ProMoS JSON Data Exchange

1.1

3.1

Introduction

This document describes the data exchange between an external device and the ProMoS
Data Management System (DMS).

Scope of this document,
JSON Data Exchange

Internet
= Q\:)/
Poral
History
Version | Who Date Remark

1.0 | 'mst frem @ 26.02.2015 Draft
1.1 mst_henh | 28.02.2015 ' API description

1.2 mst_frem | 03.03.2015 Added code "error" on read data response
Configuration

The configuration can be done on the Portal (Web-GUI), with 2 lists (read / read/write data
points).
Only allowed users can change the configuration.

Data Exchange

Used Technologies

The whole APl is HTTP POST based, see http://en.wikipedia.org/wiki/lPOST (HTTP)

For the post body JSON will be used.

We use JSON body for request (instead of the standard URL encoded request) to have the
same encoding for request and response.

http://en.wikipedia.org/wiki/JSON

© 2015 MST Systemtechnik AG, Belp

http://en.wikipedia.org/wiki/POST_(HTTP)
http://en.wikipedia.org/wiki/JSON

Data Exchange 2

3.2

3.3

33.1

3.4

Authentication

The authentication is Pre Shared Key based.
Each pushing component needs to be registered in the portal configuration.
The portal will generate a 32 character alpha numeric key.

Additionally the access can be limited by client ip(s).

Error Messages

You will get an HTTP status code 401, with Content-type: text/plain and a plain text error
message in body in case of a invalid auth key or invalid client ip.

If the authentication was successful, you will get a http status code 200.

Example

HTTP/ 1.1 401 OK

Date: Fri, 27 Feb 2015 13:37:08 GVl

Expires: Thu, 19 Nov 1981 08:52: 00 GMI

Cache-Control: no-store, no-cache, nust-revalidate, post-check=0, pre-check=0
Pragma: no-cache

Transfer-Encodi ng: chunked

Cont ent - Type: text/plain

You are not pernmitted to send data.

Read Data

You can request as much data points as you want with 1 single request.
But it's recommend to not request more then 10°000 at once, because the APl needs ~2sec
per 1000 data points.

The system will check if the portal owner permitted you read access for this data point(s) and
deliver the current value(s) of this data point(s).

The sequence of the data points in the response may not have the same order as in the
request.

© 2015 MST Systemtechnik AG, Belp

3 ProMoS JSON Data Exchange

3.4.1 Example

Request:

POST / conmponent/control -system get-val ue/ api _key/ F2E1101D72EA1A3327136EB6AFEB4C81
HTTP/ 1.1

Host: exanple.edl.ch

Connection: keep-alive

Cont ent - Type: application/json

Cont ent - Lengt h: 38299

{
"get": [
{"path":"EXAMPLEOO1: T11: MN: 003: Vi s: VMC_energyl1"},
{"path":"EXAMPLEOO1: T11: MN: 003: Vi s: VEner gy1V"},
{"path":"EXAMPLEOO1: T11: MN: 003: Vi s: VMC_power "},
{"path":"EXAMPLEOO1: not: exi sti ng"}
]
}
Response::
HTTP/ 1.1 200 OK
Date: Fri, 27 Feb 2015 13:37:08 GVl
Server: Apache
Expires: Thu, 19 Nov 1981 08:52: 00 GMT
Cache-Control: no-store, no-cache, nust-revalidate, post-check=0, pre-check=0
Pragma: no-cache
Keep- Alive: tinmeout=5 max=100
Connection: Keep-Alive
Transfer-Encodi ng: chunked
Cont ent - Type: application/json; charset=utf-8
{
"get": |
{
"code": "ok",
"pat h": " EXAMPLEOO1: T11: MN\: 003: Vi s: VMC_energyl",
"val ue": 3. 165,
"type":"doubl e",
"stanmp":"2015-02-27T08: 17: 51"
}
{
"code": "ok",
"pat h": " EXAMPLEOO1: T11: MN: 003: Vi s: VEner gy1V",
“val ue":0. 14,
"type":"doubl e",
"stanmp":"2015-02-27T08: 17: 51"
Jic
{
"code":"no pernt,
"pat h":"EXAMPLEOO1: T11: MN: 003: Vi s: VEner gy1V",
Jic
{
"code": "not found",
"pat h": " EXAMPLEOOL: not : exi sti ng",
"message": "Data point doesn't exist"
}
]
}

© 2015 MST Systemtechnik AG, Belp

Data Exchange

Response in case of fatal error:

HTTP/ 1.1 200 OK

Date: Fri, 27 Feb 2015 13:37:08 GMVI

Server: Apache

Expires: Thu, 19 Nov 1981 08:52: 00 GMT

Cache-Control: no-store, no-cache, nust-revalidate, post-check=0, pre-check=0
Pragma: no-cache

Keep- Alive: tinmeout=5 nmax=100

Connection: Keep-Alive

Transfer-Encodi ng: chunked

Cont ent - Type: application/json; charset=utf-8

{
"get": [
{
"“code":"error",
"message": "Expected JSON encoded HTTP PUSH, but got sonething else."
}
]
}

HTTP/ 1.1 200 OK

Date: Fri, 27 Feb 2015 13:37:08 GVl

Server: Apache

Expires: Thu, 19 Nov 1981 08:52: 00 GMI

Cache-Control: no-store, no-cache, nust-revalidate, post-check=0, pre-check=0
Pragma: no-cache

Keep- Alive: tinmeout=5 max=100

Connection: Keep-Alive

Transfer-Encodi ng: chunked

Cont ent - Type: application/json; charset=utf-8

{
"get": [
{
"code":"error",
"message": "M ssing \"path\" in get[33]"
}
]
}

3.4.2 Request Fields

¢ "path”
The path of the data point you want to read.
A required string field.

3.4.3 Response Fields

e "code"
The code can be:
- "ok": On success.
- "no perm": The portal owner has not permitted you to read this data point.
- "not found": You are permitted for this data point, but it doesn't exist on the system.
- "error™:In case of a fatal error.
The field always appears.

© 2015 MST Systemtechnik AG, Belp

5 ProMoS JSON Data Exchange

* "path”
The path of the requested data point.
It appears as long as there is no fatal error.

e "value"
The value contains the current value of the data point.
It appears only for code "ok".

* "type”
This field is the data type of this data point.
The type can be "int", "double” (a floating point number), "string" or "bool".
It appears only for code "ok".

e "stamp"
This field can be NULL.
If set, it contains a string with the time stamp of the last change of this data point.
The date is ISO 8601 formatted. but without time zone indication, Because the API just
forwards the time stamp just from the control system.
If the control system is a ProMoS 1.x the time is the local time zone of the object, mostly
Europe/Zurich.
It appears only for code "ok".

* "message”
This field contains an human readable error message in English.
It appears for code other than "ok".

344 JSON schema

Request:
{

"$schemn": "http://json-schemn.org/draft-04/schema#",
"title": "Read Request",
"description": "Reading one or nore data points",
"type": "array",
"items": {
"title": "Data point definition",
"type": "object",
"properties": {
"path": {
"description": "The DMS path to the data point",
"type": "string"
}
}

"addi tional Properties": false,
"required": ["path"]
}

"mnltenms": 1

© 2015 MST Systemtechnik AG, Belp

Data Exchange 6

3.5

Response::

{
"$schema": "http://json-schemn. org/draft-04/schema#",
"title": "Read Response",
"description": "Informati on about one or nore data points",
"type": "array",
"items": {
"title": "Data point value",
"type": "object",
"properties": {

"code": {
"description": "The result code",
"type": "string",
“enum': ["ok", "no perm', "not found"]
},
"path": {

"description": "The DMS path to the data point",
"type": "string"

be
"val ue": {
"description": "The value of the data point",
"type": ["number", "string", "bool ean"]
be
"type': {
"description": "The value type",
"type": "string",
"enunt': ["int", "double", "string", "bool"]
B
"stanmp": {
"description": "The tinestanp of the |ast change of the value, |SO
8601",
"type": ["string", "null"]
b
"message": {
"description": "Human readabl e error nessage",
"type": "string"
}
e
"required": ["code"]
B
"mnltems": 1
}
Write Data

You can write as much data points as you want with 1 single request.
But it's recommend to not write more then 10°000 at once, because the APl needs ~5sec per
1000 data points.

The system will check if the portal owner permitted you write access for this data point(s).
The sequence of the data points in the response may not have the same order as in the
request.

© 2015 MST Systemtechnik AG, Belp

7 ProMoS JSON Data Exchange
3.5.1 Example
Request:

POST / conponent/control | -system set-val ue/ api _key/ F2E1101D72EA1A3327136EB6AFEB4C81

HTTP/ 1.1

Host: exanple.edl.ch
Connection: keep-alive

Cont ent - Type: application/json
Cont ent - Lengt h: 38299

{
"set": [

{
"pat h": " EXAMPLEOO1: T11: MN: 003: Vi s: VMC _energyl",
"val ue": 4. 4565467567867,
"type":"doubl e"

B

{
"pat h":"EXAMPLEOO1: T11: MN: 003: Vi s: VEner gy1V",
"val ue": -1,
"type":"doubl e"

},

{
"pat h": " EXAMPLEOO1: TEST: BOOLEAN",
"val ue": true,
"type":"bool "

},

{
"pat h": " EXAMPLEOOL: TEST: | NT",
"val ue": 44,
"type":"int"

D

{
"pat h": " EXAMPLEOO1: TEST: STRI NG,
"val ue":"some | ong exanple nmessage",
"type":"string"

}

]
}

© 2015 MST Systemtechnik AG, Belp

Data Exchange 8

Response::
HTTP/ 1.1 200 OK
Date: Fri, 27 Feb 2015 13:37:08 GMVI
Server: Apache
Expires: Thu, 19 Nov 1981 08:52: 00 GMT
Cache-Control: no-store, no-cache, nust-revalidate, post-check=0, pre-check=0
Pragma: no-cache
Keep- Alive: tinmeout=5 nmax=100
Connection: Keep-Alive
Transfer-Encodi ng: chunked
Cont ent - Type: application/json; charset=utf-8
{
"get": [
{
"code": "ok",
"pat h": " EXAMPLEOO1: T11: M\: 003: Vi s: VMC_energyl",
"val ue": 3,
"type":"doubl e"
b
{
"code": "ok",
"pat h": " EXAMPLEOO1: T11: MN: 003: Vi s: VEner gy1V",
"val ue": 0,
"type":"doubl e"
b
{
"code":"no perni,
"pat h": " EXAMPLEOO1: TEST: BOOLEAN",
b
{
"“code":"error",
"pat h": " EXAMPLEOO1: TEST: | NT",
"message": "Data point doesn't exist"
Je
{
"“code":"error",
"pat h": " EXAMPLEOO1: TEST: STRI NG,
"message":"Data type doesn't match”
}
]
}

3.5.2 Request Fields

* "path”
The path of the data point to write.
A required string field.

e "value"
The value to write.
It is recommended to use real json data types, because for bool fields - a string "FALSE"
will be TRUE!
A required mixed value field.

© 2015 MST Systemtechnik AG, Belp

9 ProMoS JSON Data Exchange

* "type”
The type of the value.
The API will check it the value type on control system if it matches.
The type can be "int", "double” (a floating point number), "string”, "bool".
Arequired string field.

3.5.3 Response Fields

e "code"
The code can be:
- "ok": On success.
- "no perm": The portal owner has not permitted you to write this data point.
- "not found": You are permitted for this data point, but it doesn't exist on the system.
- "error": Something went wrong while writing to the control system.
The field always appears.

° Ilpathll
The path of the written data point.
It appears as long as there is no fatal error.

e "value"
The value that you have set.
It appears only for code "ok".

* "type”
This field is the data type of this data point.
You can use it if you want double check it.
It appears only for code "ok"

® "message"
This field contains an human readable error message in English.
It appears for code other than "ok".

© 2015 MST Systemtechnik AG, Belp

Data Exchange

354 JSON schema

Request:

{

"$schemn": "http://json-schemn.org/draft-04/schema#",
"title": "Wite Request",
"description": "Witing one or nore data points",

"type": "array",
"items": {
"title": "Data point wite data",

"type": "object",
"properties": {
"path": {
"description": "The DMS path to the data point",
"type": "string"

}
"val ue": {
"description": "The new value of the data point",
"type": ["number", "string", "bool ean"]
}
"type': {
"description": "The value type",
"type": "string",
"enunm': ["int", "double", "string", "bool"]
}

}

ddi ti onal Properties": false,
"required": ["path", "value", "type"]
},

"mnltenms": 1

© 2015 MST Systemtechnik AG, Belp

11

ProMoS JSON Data Exchange

Response::

{
"$schema": "http://json-schemn. org/draft-04/schema#",
"title": "Wite Response",

"description": "Informati on about writing one or nore data points",
"type": "array",
"items": {
"title": "Data point wite information",
"type": "object",
"properties": {
"code": {
"description": "The result code",
"type": "string",
"enum': ["ok", "no perm', "not found", "error"]

},
"path": {
"description": "The DMS path to the data point",
"type": "string"
},
"val ue": {
"description": "The value of the data point",
"type": ["number", "string", "bool ean"]
},
"type": {
"description": "The value type",
"type": "string",
"enunt': ["int", "double", "string", "bool"]
B
"message": {
"description": "Human readabl e error nmessage",
"type": "string"
}

}

"required": ["code"]

H

"mnltems": 1

© 2015 MST Systemtechnik AG, Belp

	Introduction
	History

	Configuration
	Data Exchange
	Used Technologies
	Authentication
	Error Messages
	Example

	Read Data
	Example
	Request Fields
	Response Fields
	JSON schema

	Write Data
	Example
	Request Fields
	Response Fields
	JSON schema

